A Presentation on

Lasing Processes, Transitions and Gain

Presenter: Fariah Hayee Student No.: 0412062208

OBJECTIVES

Understanding: * the stimulated emission * pumping processes involved * rate equations * laser gain

$\frac{L}{ight} \frac{A}{mplification} \text{ by } \frac{S}{imulated} \frac{E}{mission} \text{ of } \frac{R}{imulated} \frac{E}{mission} \frac{R}{imulated} \frac{R}{imulat$

Step1: Build a cavity Step 2: Insert a gain medium \rightarrow atoms in liquid, solid or gas Step 3: Start the process

Properties:

Coherence
Monochromaticity
Collimation

Energy Transfer Processes:

Spontaneous emission:

– electron 'naturally' falls down
from level 2 to level 1

Stimulated emission:

 electron is 'triggered' to fall down in presence of photons of energy equal to the energy difference of the initial and final state.

Stimulated absorption:

- electron is raised from 2 to 1.

Amplifying Process

Spantateoresus Esoription Stimulated Emission

Thermal Equilibrium

Atomic population is governed by temperature without an external source of energy. Exponential drop in population with energy.

Creating an Inversion

• Boltzmann's Distribution: $N_2/N_1 = e^{-\Delta E/k_BT}$

So, cannot make laser from a system in thermal equilibrium. Need a pump.

Pumping: supplying energy to the laser medium to excite the upper energy levels.

Spontaneous Emission

 $r_{spontaneous} = A_{21} N_2$

A₂₁ = Einstein's coefficient
N₂ = Population at the
upper level

Stimulated Emission

 $r_{stimulated} = B_{21} N_2 \rho$

 B_{21} = Einstein's coefficient ρ = Energy density of EM wave

Stimulated Absorption

$$r_{absorption} = B_{12} N_1 \rho$$

 B_{12} = Einstein's coefficient N_1 = population of lower level ρ = Energy density of EM wave

Rate Equations

For the upper level:

$r_{absorption} = r_{spontaneous} + r_{stimulated}$ $B_{12} N_1 \rho = B_{21} N_2 \rho + A_{21} N_2$

Thus,

Rate Equations (Cont.)

Necessary Conditions for Lasing:

Sufficient Condition for Lasing:

Gain > Loss

Gain coefficient: power gain per unit length $g = \frac{\Delta P}{P\Delta x}$

Losses:

- Transmission at the mirror
- Absorption and Scattering at the mirrors
- Absorption in the laser medium

Threshold Gain:

Threshold Condition:

Lets, g = gain coefficient γ = effective loss coefficient L= length of the active medium R₁, R₂ = reflectances of mirrors M₁ and M₂

In travelling from M1 to M2, the beam power increases from P_0 to P:

$$P = P_0 e^{(g-\gamma)L}$$

After a complete round trip:

$$G = \frac{Final Power}{Incident Power} = R_1 R_2 e^{2(g-\gamma)L}$$

For threshold: $\mathbf{G} = \boldsymbol{g_{th}} = 1$

$$g_{th} = \gamma + \frac{1}{2L} \ln(\frac{1}{R_1 R_2})$$

Pumping Threshold:

Experiments to Measure g_{th} :

MOPA Configuration

- Selecting the laser wavelength, gain for any transition can be calculated
- Threshold gain can be calculated to determine minimum required reflectivities or maximum inserted loss.

FWHM Linewidth:

- Distance between the half power points of the gain spectrum
- The primary reason of broadening: Doppler Effect: $v = v_0(1 \pm \frac{v}{c})$
- FWHM linewidth due to Doppler effect: $\Delta \upsilon = 2\upsilon_0 \sqrt{\left(\frac{2kT \ln(2)}{Mc^2}\right)}$

Pumping: A closer look

■ Pumping must be Selective → upper lasing level is populated, lower lasing level empty.

- The excitation process can be
- a) Electrical: e.g., electrical discharge in He-Ne laser
- b) Optical: e.g., flashlamp in Ruby and Nd:YAG laser
- c) Chemical and/or nuclear

The emission spectrum of the lamp should have a reasonable value at the absorption peak of the laser medium.

Pumping: A closer look

Fig. : Optical Pumping for Lasers.

Three & Four Level Laser:

- Three level lasers requires higher pumping power.
- There is a time delay for the buildup of population in 3level laser, whereas in 4level, the population inversion occurs almost immediately.

 4-level laser more efficient

Ruby Laser

- Three level
- Quite efficient because:
- a) Broad pump absorption bands b) Longer ULL
 - lifetime (3 ms)

Nd:YAG Laser

- 4 level laser
- Multiple pump bands

He-Ne Laser

- Electrical discharge excites He ions by collisions.
- Excited He atoms collide with Ne atoms \rightarrow transfers atoms to the ULL

20 -

19-

18-

17-

Energy (eV)

No resonant energy level of He at the energy level value of the LLL of Ne \rightarrow No transfer of energy

Does Not contribute to laser output: seen as orange line in spectrum

CW and Pulsed Lasing Action

- LLL lifetime > ULL Lifetime
- ULL filled very quickly, but eventually LLL population will exceed ULL population and Lasing will cease.

Pulsed Mode Operation

Uses: marking, cutting, drilling, range finder, surgery. LLL Lifetime < ULL Lifetime

CW operation

 $r_{spontaneous} = A_{21} N_2$ where $A_{21} = 1/\tau$ So, τ increases, A_{21} decreases, probability of spontaneous emission decreases.

N2 Laser: Pulse Mode Operation

• $\tau_{ULL} = 10 \ ns$, $\tau_{LLL} = 10 \ ms$

A fast pumping mechanism (current ≈ 1000 A) to fill ULL

Lasing ensues until at 10 ns

After about 10 ms the LLL depopulates.

Thermal Population Effects:

- Effect of thermal population: almost negligible
- Where two or more transitions are possible, with one having a lower level close to ground state, a transition with a higher lower level may be favored

Rate Equation for 2-level system

2-level System (Cont.)

Rate of change of population: $\frac{d \Delta N}{dt} = \frac{dN_1}{dt} - \frac{dN_2}{dt}$ Equating to zero (at s.s) and putting $W_{12} = W_{21}$, we get: $\Delta N = \frac{N_0}{dt}$

$$\Delta N = \frac{1}{1 + 2W_{21}\tau_{21}}$$

 W_{21} increases $\rightarrow \Delta N$ tends to zero, thus N1 and N2 will highest be equal: No population Inversion

3 Level System

Pump level:

$$\frac{dN_3}{dt} = W_{13}(N_1 - N_3) - \frac{N_3}{\tau_3}$$
Equating to zero for s.s:

$$W_{13}N_1 = N_3(\frac{1}{\tau_3} + W_{13})$$
Spontaneou s decay from $3 \rightarrow 2$ and $3 \rightarrow 1$

 Practically, the decay from the pump level to the upper level must be much faster than the decay from the upper to the lower lasing levels.

$$W_{13}N_1\tau_3=N_3$$

3 Level System(Cont.)

Level 2: $\frac{dN_2}{dt} = \frac{N_3}{\tau_{32}} - \frac{N_2}{\tau_{21}}$ $\frac{N_1(t)}{N_2(t)}$ Equating to zero: $N_2 = N_3 \frac{\tau_{21}}{\tau_{32}}$ Assuming $\tau_3 = \tau_{32}$: Pump Power (arbitrary units) $\Delta N = N_1 (W_{13} \tau_{21} - 1)$

A minimum pumping rate equal to $W_{13}\tau_{21}$ is needed just to get half of the population at ground state to the upper lasing level.

Four Level laser:

Pump level:

$$\frac{dN_4}{dt} = W_{14}(N_1 - N_4) - \frac{N_4}{\tau_4}$$
Equating to zero and assuming $N_1 \ll N_4$:
 $W_{14}\tau_4 N_1 = N_4$

Four Level laser (cont.):

Level 3: $\frac{dN_3}{dt} = \frac{N_4}{\tau_{43}} - \frac{N_3}{\tau_3}$ Equating to zero: $N_3 = N_4 \frac{\tau_3}{\tau_{43}}$

Four Level laser (cont.):

Four Level laser (cont.):

Population Inversion: $\Delta N = N_1 W_{14} \tau_3$ Thus, inversion occurs when any pump energy is supplied.

Gain:

• Gain Coefficient $g = (N_2 - N_1)\sigma_0$ σ_0 = cross section of the stimulated emission process

•
$$\sigma(\upsilon) = Sg(\upsilon) = \frac{\lambda^2}{8\pi t_{sp}}g(\upsilon)$$

g(v) is the lineshape of the gain function and S is the transition strength or oscillator strength.

For homogeneous processes:

$$g(\upsilon_0)=\frac{2}{\pi\Delta\upsilon}$$

 $\Delta \upsilon$ is the FWHM linewidth.

• For inhomogeneous processes:

$$g(v_0) = \frac{1}{\Delta v}$$

Saturation:

- The previous calculation don't account for the stimulated emission processes.
- ♦ If Light present → Stimulated Emission (N_2W_{21}) → Loss
- Also a absorption process (N_1W_{12}) from LLL to ULL.
- ♦ Photon flux increases → amount of inversion decreases → gain decreases

Saturation (cont.):

• No saturation: $P_{output} = P_{input} e^{g_0 l}$

Light present in the cavity, gain medium behaves as a 'saturated amplifier': $P_{output} = P_{input} + g_0 l$

Efficiency:

- η_{Optical}: conversion of electrical energy to
 optical energy → depends on lamp technology
- η_{Coupling}:Coupling of the pump light to laser
 medium → depends on geometry of laser medium
- η_{Absorption}: depends on the wavelength of the source and the absorption spectrum of gain medium

Efficiency (cont.):

• $\eta_{Quantum} = \frac{E_{ULL} - E_{ground}}{E_{pump} - E_{ground}} \rightarrow$ depends on the particular atomic medium

Overall Efficiency: Typically 1% for gas lasers *η_{pump}*

 $= \eta_{Optical} \cdot \eta_{Coupling} \cdot \eta_{Absorption} \cdot \eta_{Quantum}$

Required Pump Power:

Output Power from a Laser:

- Threshold gain: Round trip gain = Round trip loss $g_{th} = \gamma + \frac{1}{2L} \ln \left(\frac{1}{R_1 R_2} \right)$
- After gain reaches threshold, it saturates to at equilibrium

$$g_{sat} = \frac{g_0}{1 + 2 I/I_{sat}}$$
Unsaturated gain
of the amplifier
 $g_0 \propto \Delta N$

Output Power from a Laser: (cont.)

Solving for Intensity I,

$$I = \frac{\{\frac{2g_0}{[2\gamma l \ln(1/R_1R_2)]} - 1\}I_{sat}}{2}$$

- By multiplying area, We get the power available.
- g_0 can be determined experimentally, thus maximum power can be calculated.

