Atomic Emission and Quantum Mechanics

Asif Ahmed Student ID# 0412062210

Line Spectrum

- Electromagnetic spectrum consisting of discrete lines.
- Thermal light \rightarrow Line spectrum is continuous peaking at a particular wavelength.
- Gas \rightarrow Line spectrum consists of discrete, well-defined components.

Spectral Width

Spectroscope

- An instrument used to measure properties of light over a specific portion of the electromagnetic spectrum.
- The variable measured is usually wavelength.

 $m\lambda = d\sin\theta$

- $m \rightarrow$ order of diffraction
- $\lambda \rightarrow$ wavelength
- $d \rightarrow$ spacing between lines on the grating
- $\theta \rightarrow \text{angle}$ at which light is diffracted

Einstein and Planck Relation

Photoelectric Effect

Bohr's Atomic Model

- Electrons around an atom orbit in a number of possible discrete energy states.
- Atoms do not radiate energy as long as they are fixed in that orbit.
- Atoms may jump from one energy state to another and in doing so will absorb or emit radiation in the form of a photon.

Bohr's Atomic Model (Ctd.)

Radius of Bohr Orbit: $r = n^2 a_0$ $a_0 \rightarrow$ Bohr radius (5.29 × 10⁻¹¹ m)

Energy of an electron in a particular orbit: $E_n = -\frac{13.6}{n^2}$ (eV)

$$E_1 = -13.6 \text{ eV}$$

 $E_2 = -3.4 \text{ eV}$
 $E_3 = -1.5 \text{ eV}$
 $E_4 = -0.85 \text{ eV}$

Balmer Series:

$$n_{f} = 2$$

$$n_{i} = 3 \Rightarrow E_{3} - E_{2} = 1.9 \text{ eV}$$

$$\lambda = 656.3 \text{ nm}$$

$$n_{i} = 4 \Rightarrow E_{4} - E_{2} = 2.55 \text{ eV}$$

$$\lambda = 486.1 \text{ nm}$$

 $n_f = 1 \Rightarrow$ Lyman Series $n_f = 3 \Rightarrow$ Paschen Series $n_f = 4 \Rightarrow$ Brackett Series $n_f = 5 \Rightarrow$ Pfund Series

Frank-Hertz Experiment

Accelerating Potential

Collector Current

9

Fluorescence

- Emission of light by a substance that has absorbed light or other electromagnetic radiation.
- Fluorescent Tube: Used to convert otherwise useless ultraviolet emissions into useful visible light.

Types of Solids

Electron-Hole Pair

p-n Junction

Types of Semiconductors

Light Emitting Diode

Light Emitting Diode (Ctd.)

- Emission wavelength should follow $hc/\lambda = E_g = E_c E_v$.
- Peak occurs at $\left(E_c + \frac{1}{2}kt\right) \left(E_v \frac{1}{2}kt\right) = E_g + kT.$
- Peak emission wavelength, $\lambda = \frac{hc}{E_g + kT}$.
- Minimum energy difference = E_g .
- Maximum possible wavelength corresponds to E_g.

Light Emitting Diode (Ctd.)

Limitations of the Bohr Model

- Suitable for atoms with single valence electron (e. g. Hydrogen); inadequate for complex atoms such as neon (6 electrons in outer shell) or even helium (2 electrons in outer shell).
- Line spectra for such multiple electrons atoms cannot be explained.
- Angular momentum for ground state (n = 1) of hydrogen is $\frac{h}{2\pi}$.

But experimentally it has been found to be zero.

There must be something besides shell number, n.

Wave Particle Duality

Planck-Einstein relation for photons: $E = h\nu$.

• Einstein's mass-to-energy equivalency: $E = mc^2$.

- Wavelength and frequency relation: $c = \nu \lambda$.
- Momentum, p = mc.
- Combining them altogether,

$$\lambda = \frac{h}{p}$$

Evidence of Wave Properties in Electrons

Diffraction Pattern

Angular Momentum

- Charged electron has two types of angular momentum:
 - Orbital
 - Spin
- Analysis of hyperfine structure of hydrogen line shows a series of very closely spaced lines in each line!
- Orbital Quantum Number:
 - Represents the magnitude of the orbital angular momentum.
 - Represented by *l*.
 - Values of l = 0 to n 1.
 - Example:
 - $n=2 \Rightarrow l=0,1.$
 - $l = 0 \Rightarrow$ Zero angular momentum; Circular orbit.
 - $l = 1 \Rightarrow$ Some discrete value of angular momentum; Elliptical orbit.

Angular Momentum (Ctd.)

Orbital Quantum Number	Description	Notation	Maximum Number of Electrons
l = 0	Sharp	S	2
l = 1	Principal	Р	6
l = 2	Diffuse	d	10
l = 3	Fundamental	f	14

Electron Configuration Example: $Na(II) = 1s^2 2s^2 2p^6 3s^1$

Transitions can occur between any energy state to yield photon emission. Each level of n will now have n possible values of l.

Angular Momentum (Ctd.)

- Bohr theory: all electrons in an n = 2 state have exactly the same energy, regardless of orbital configuration.
- But, electrons in various orbital configurations do indeed have different energies.

Magnetic Quantum Number

- An electron: analogous to a current loop and will exhibit a magnetic moment.
- Denoted by: m.
- Represents the direction of angular momentum of an electron.
- Values of m = all integers from -l to +l. (Example: $l = 1 \Rightarrow m = -1,0,1$)
- Can be thought of as the three-dimensional tilt of an elliptical orbit.

The Stern-Gerlach Experiment

Experimental Setup

- Neutral silver atoms emerging from a hot oven.
- Deflection via a magnetic field.
- Target: a photographic plate.

Classical Prediction: Magnet On

Experimental Result: Magnet On

Spin Quantum Number

- Spin: rotation of a particle around some axis.
- Denoted by s.
- Two possible values: $-\frac{1}{2}$ and $+\frac{1}{2}$.
- When s is added and subtracted from l, the effects of spin on energy levels can be seen. --- l - s coupling

Effect of Spin

The Sodium Spectrum

 $Na(II) = 1s^2 2s^2 2p^6 3s^1$

The Mercury Spectrum

Energy Levels in Mercury

Carbon Dioxide Molecule

• A single carbon atom chemically bonded to two oxygen atoms with double covalent bonds acting as springs leading to vibrational modes.

