
Chapter 13

ANTENNAS

The Ten Commandments of Success
1. Hard Work: Hard work is the best investment a man can make.
2. Study Hard: Knowledge enables a man to work more intelligently and effec-

tively.
3. Have Initiative: Ruts often deepen into graves.
4. Love Your Work: Then you will find pleasure in mastering it.
5. Be Exact: Slipshod methods bring slipshod results.
6. Have the Spirit of Conquest: Thus you can successfully battle and overcome

difficulties.
7. Cultivate Personality: Personality is to a man what perfume is to the flower.
8. Help and Share with Others: The real test of business greatness lies in giving

opportunity to others.
9. Be Democratic: Unless you feel right toward your fellow men, you can never

be a successful leader of men.
10. In all Things Do Your Best: The man who has done his best has done every-

thing. The man who has done less than his best has done nothing.

—CHARLES M. SCHWAB

13.1 INTRODUCTION

Up until now, we have not asked ourselves how EM waves are produced. Recall that elec-
tric charges are the sources of EM fields. If the sources are time varying, EM waves prop-
agate away from the sources and radiation is said to have taken place. Radiation may be
thought of as the process of transmitting electric energy. The radiation or launching of the
waves into space is efficiently accomplished with the aid of conducting or dielectric struc-
tures called antennas. Theoretically, any structure can radiate EM waves but not all struc-
tures can serve as efficient radiation mechanisms.

An antenna may also be viewed as a transducer used in matching the transmission line
or waveguide (used in guiding the wave to be launched) to the surrounding medium or vice
versa. Figure 13.1 shows how an antenna is used to accomplish a match between the line
or guide and the medium. The antenna is needed for two main reasons: efficient radiation
and matching wave impedances in order to minimize reflection. The antenna uses voltage
and current from the transmission line (or the EM fields from the waveguide) to launch an
EM wave into the medium. An antenna may be used for either transmitting or receiving
EM energy.
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EM wave

Generator Transmission line

Antenna

Surrounding medium

Figure 13.1 Antenna as a matching device between the guiding struc-
ture and the surrounding medium.

Typical antennas are illustrated in Figure 13.2. The dipole antenna in Figure 13.2(a)
consists of two straight wires lying along the same axis. The loop antenna in Figure 13.2(b)
consists of one or more turns of wire. The helical antenna in Figure 13.2(c) consists of a
wire in the form of a helix backed by a ground plane. Antennas in Figure 13.2(a-c) are
called wire antennas; they are used in automobiles, buildings, aircraft, ships, and so on.
The horn antenna in Figure 13.2(d), an example of an aperture antenna, is a tapered
section of waveguide providing a transition between a waveguide and the surroundings.
Since it is conveniently flush mounted, it is useful in various applications such as aircraft.
The parabolic dish reflector in Figure 13.2(e) utilizes the fact that EM waves are reflected
by a conducting sheet. When used as a transmitting antenna, a feed antenna such as a
dipole or horn, is placed at the focal point. The radiation from the source is reflected by the
dish (acting like a mirror) and a parallel beam results. Parabolic dish antennas are used in
communications, radar, and astronomy.

The phenomenon of radiation is rather complicated, so we have intentionally delayed
its discussion until this chapter. We will not attempt a broad coverage of antenna theory;
our discussion will be limited to the basic types of antennas such as the Hertzian dipole, the
half-wave dipole, the quarter-wave monopole, and the small loop. For each of these types,
we will determine the radiation fields by taking the following steps:

1. Select an appropriate coordinate system and determine the magnetic vector poten-
tial A.

2. Find H from B = /tH = V X A.

3. Determine E from V X H = e or E = i;H X as assuming a lossless medium
dt

(a = 0).
4. Find the far field and determine the time-average power radiated using

dS, where ve = | Re (E, X H*)

Note that Pnd throughout this chapter is the same as Pme in eq. (10.70).
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(a) dipole (b) loop

(c) helix

(d) pyramidal horn

Radiating
dipole

Reflector

(e) parabolic dish reflector

Figure 13.2 Typical antennas.

13.2 HERTZIAN DIPOLE

By a Hertzian dipole, we mean an infinitesimal current element / dl. Although such a
current element does not exist in real life, it serves as a building block from which the field
of a practical antenna can be calculated by integration.

Consider the Hertzian dipole shown in Figure 13.3. We assume that it is located at the
origin of a coordinate system and that it carries a uniform current (constant throughout the
dipole), I = Io cos cot. From eq. (9.54), the retarded magnetic vector potential at the field
point P, due to the dipole, is given by

A =
A-wr

(13.1)
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Figure 13.3 A Hertzian dipole carrying
current I = Io cos cot.

where [/] is the retarded current given by

[/] = Io cos a) ( t ) = Io cos {bit - (3r)
u J

(13.2)
= Re [Ioe

j(M-M]

where (3 = to/w = 2TT/A, and u = 1/V/xe. The current is said to be retarded at point P
because there is a propagation time delay rlu or phase delay /3r from O to P. By substitut-
ing eq. (13.2) into eq. (13.1), we may write A in phasor form as

(13.3)Azs A
 e

Transforming this vector in Cartesian to spherical coordinates yields

A, = (Ars, A6s, A^)

where

A n . = A z s cos 8, Affs = —Azs sin 6,

But B, = ^H, = V X As; hence, we obtain the H field as

= 0

Iodl
H^ = —— sin 0 — + - r e

j!3

** 4x lr r-

Hrs = 0 = //Ss

We find the E field using V X H = e dWdt or V X Hs = jueEs,

_ : , - u — ^ ^ fl ! _ - j__ | ^ - 7 / 3 r

E^ = 0

r r

(13.4)

(13.5a)

(13.5b)

(13.6a)

(13.6b)

(13.6c)
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where

V =

A close observation of the field equations in eqs. (13.5) and (13.6) reveals that we
have terms varying as 1/r3, 1/r2, and 1/r. The 1/r3 term is called the electrostatic field since
it corresponds to the field of an electric dipole [see eq. (4.82)]. This term dominates over
other terms in a region very close to the Hertzian dipole. The 1/r term is called the induc-
tive field, and it is predictable from the Biot-Savart law [see eq. 7.3)]. The term is impor-
tant only at near field, that is, at distances close to the current element. The 1/r term is
called the far field or radiation field because it is the only term that remains at the far zone,
that is, at a point very far from the current element. Here, we are mainly concerned with the
far field or radiation zone (j3r ̂ 5> 1 or 2irr Ŝ> X), where the terms in 1/r3 and 1/r2 can be
neglected in favor of the 1/r term. Thus at far field,

4-irr
sin 6 e - V

- Ers - = 0

(I3.7a)

(I3.7b)

Note from eq. (13.7a) that the radiation terms of H$s and E9s are in time phase and orthog-
onal just as the fields of a uniform plane wave. Also note that near-zone and far-zone fields
are determined respectively to be the inequalities /3r <$C I and f3r ̂ > I. More specifically,
we define the boundary between the near and the far zones by the value of r given by

2d2

r = (13.8)

where d is the largest dimension of the antenna.
The time-average power density is obtained as

1
2Pave = ~ Re (Es X H*) = ^ Re (E6s H% ar)

(13.9)

Substituting eq. (13.7) into eq. (13.9) yields the time-average radiated power as

dS

<t>=o Je=o

3 2 T T 2

327r2r2
sin2 6 r2 sin 6 dd d<j> (13.10)

2TT sin* 6 dO
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But

sin' 6d6 = \ (1 - cosz 0) d(-cos 9)

cos30
— cos i

and 02 = 4TT2/X2. Hence eq. (13.10) becomes

^rad ~
dl

3 L X.

If free space is the medium of propagation, rj = 120TT and

(13.11a)

(13.11b)

This power is equivalent to the power dissipated in a fictitious resistance /?rad by current
I = Io cos cot that is

~rad * rms " rad

or

1
(13.12)

where /rms is the root-mean-square value of/. From eqs. (13.11) and (13.12), we obtain

OP
r» z ' * rad /1 o 11 \

r̂ad = -ZV (13.13a)

or

(13.13b)

The resistance Rmd is a characteristic property of the Hertzian dipole antenna and is called
its radiation resistance. From eqs. (13.12) and (13.13), we observe that it requires anten-
nas with large radiation resistances to deliver large amounts of power to space. For
example, if dl = X/20, Rrad = 2 U, which is small in that it can deliver relatively small
amounts of power. It should be noted that /?rad in eq. (13.13b) is for a Hertzian dipole in
free space. If the dipole is in a different, lossless medium, rj = V/x/e is substituted in
eq. (13.11a) and /?rad is determined using eq. (13.13a).

Note that the Hertzian dipole is assumed to be infinitesimally small (& dl <S^ 1 or
dl ^ X/10). Consequently, its radiation resistance is very small and it is in practice difficult
to match it with a real transmission line. We have also assumed that the dipole has a
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uniform current; this requires that the current be nonzero at the end points of the dipole.
This is practically impossible because the surrounding medium is not conducting.
However, our analysis will serve as a useful, valid approximation for an antenna with
dl s X/10. A more practical (and perhaps the most important) antenna is the half-wave
dipole considered in the next section.

13.3 HALF-WAVE DIPOLE ANTENNA

The half-wave dipole derives its name from the fact that its length is half a wavelength
(€ = A/2). As shown in Figure 13.4(a), it consists of a thin wire fed or excited at the mid-
point by a voltage source connected to the antenna via a transmission line (e.g., a two-wire
line). The field due to the dipole can be easily obtained if we consider it as consisting of a
chain of Hertzian dipoles. The magnetic vector potential at P due to a differential length
dl(= dz) of the dipole carrying a phasor current Is = Io cos fiz is

(13.14)

Transmission
line

Dipole
antenna

Current distribution Figure 13.4 A half-wave dipole.
/ = /„ cos /3z

t' \

(a)
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Notice that to obtain eq. (13.14), we have assumed a sinusoidal current distribution
because the current must vanish at the ends of the dipole; a triangular current distribution
is also possible (see Problem 13.4) but would give less accurate results. The actual current
distribution on the antenna is not precisely known. It is determined by solving Maxwell's
equations subject to the boundary conditions on the antenna, but the procedure is mathe-
matically complex. However, the sinusoidal current assumption approximates the distribu-
tion obtained by solving the boundary-value problem and is commonly used in antenna

theory.
If r S> €, as explained in Section 4.9 on electric dipoles (see Figure 4.21), then

r - r' = z cos i or

Thus we may substitute r' — r in the denominator of eq. (13.14) where the magnitude
of the distance is needed. For the phase term in the numerator of eq. (13.14), the dif-
ference between fir and ftr' is significant, so we replace r' by r — z cos 6 and not r. In
other words, we maintain the cosine term in the exponent while neglecting it in the de-
nominator because the exponent involves the phase constant while the denominator does
not. Thus,

-W4

4irr

A/4
(13.15)

j8z cos e cos fiz dz
- A / 4

From the integral tables of Appendix A.8,

eaz cos bz dz =
eaz {a cos bz + b sin bz)

Applying this to eq. (13.15) gives

Azs =

nloe~jl3rejl3zcose UP cos 0 cos (3z + ff sin ffz)
A/4

- A / 4

(13.16)

Since 0 = 2x/X or (3 X/4 = TT/2 and -cos2 0 + 1 = sin2 0, eq. (13.16) becomes

A,, = - ^ " f ' \ [e^n)™\0 + 13)- e -^«)«»» ( 0 _ ft] ( 1 3 - 1 7 )

A-wrfi sin 0

Using the identity eJX + e~;;c = 2 cos x, we obtain

\
- cos 6> )

(13.18)
txloe

 i&rcos I - c o s I

2Trrj3sin2 6
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We use eq. (13.4) in conjunction with the fact that B^ = /*HS = V X As and V X H , =
y'coeEs to obtain the magnetic and electric fields at far zone (discarding the 1/r3 and 1/r2

terms) as

(13.19)

Notice again that the radiation term of H^,s and E$s are in time phase and orthogonal.
Using eqs. (13.9) and (13.19), we obtain the time-average power density as

cos2 ( — cos 6 (13.20)

8TTV sin2 $

The time-average radiated power can be determined as

2 COS22-K fw I ? / 2 COS2 I ^ COS

= 0 8x2r2 sin2 $
r2 sin 0 d6 d<j>

2TT

(13.21)

sin i

J
rT COS I — COS I

^-s—~d e

o sm0

where t\ = 120TT has been substituted assuming free space as the medium of propagation.
Due to the nature of the integrand in eq. (13.21),

TT/2 COS - COS 6

sine

cos~l — cos I

de= I — — '-de
sin 0J0 "'" " Jitl2

This is easily illustrated by a rough sketch of the variation of the integrand with d. Hence

= 60/2

IT
- c o s i

sin I
(13.22)
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Changing variables, u = cos 6, and using partial fraction reduces eq. (13.22) to

C O S 2 - T T

\-u2 du

= 307'

2 1 2 1
COS —KU r , COS ~KU

2 2 j

du + \ — du1 + U 0
1 - u

(13.23)

Replacing 1 + u with v in the first integrand and 1 — u with v in the second results in

rad = 30/2,

= 30/2

, sin2—7TV

dv +
L'0

2 S in 2 -7TV

2 sin -TTV

dv

(13.24)

Changing variables, w = irv, yields

2TT sin — w
- dw

= 15/

= 15 / '

2 [ ^ (1 — COS

2! 4! 6! 8!

(13.25)

w2 w4 w6 w8

since cos w = l H 1 • •. Integrating eq. (13.25) term by term and
2! 4! 6! 8!

evaluating at the limit leads to

2 f (2TT)2 (2TT)4 (2?r)6 (2TT)8

~ 1 5 / ° L 2(2!) ~ 4(4!) + 6(6!) ~ 8(8!)

= 36.56 ll

+ (13.26)

The radiation resistance Rrad for the half-wave dipole antenna is readily obtained from
eqs. (13.12) and (13.26) as

(13.27)
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Note the significant increase in the radiation resistance of the half-wave dipole over that of
the Hertzian dipole. Thus the half-wave dipole is capable of delivering greater amounts of
power to space than the Hertzian dipole.

The total input impedance Zin of the antenna is the impedance seen at the terminals of
the antenna and is given by

~ "in (13.28)

where Rin = Rmd for lossless antenna. Deriving the value of the reactance Zin involves a
complicated procedure beyond the scope of this text. It is found that Xin = 42.5 0, so
Zin = 73 + y'42.5 0 for a dipole length £ = X/2. The inductive reactance drops rapidly to
zero as the length of the dipole is slightly reduced. For € = 0.485 X, the dipole is resonant,
with Xin = 0. Thus in practice, a X/2 dipole is designed such that Xin approaches zero and
Zin ~ 73 0. This value of the radiation resistance of the X/2 dipole antenna is the reason for
the standard 75-0 coaxial cable. Also, the value is easy to match to transmission lines.
These factors in addition to the resonance property are the reasons for the dipole antenna's
popularity and its extensive use.

13.4 QUARTER-WAVE MONOPOLE ANTENNA

Basically, the quarter-wave monopole antenna consists of one-half of a half-wave dipole
antenna located on a conducting ground plane as in Figure 13.5. The monopole antenna is
perpendicular to the plane, which is usually assumed to be infinite and perfectly conduct-
ing. It is fed by a coaxial cable connected to its base.

Using image theory of Section 6.6, we replace the infinite, perfectly conducting ground
plane with the image of the monopole. The field produced in the region above the ground
plane due to the X/4 monopole with its image is the same as the field due to a X/2 wave
dipole. Thus eq. (13.19) holds for the X/4 monopole. However, the integration in eq. (13.21)
is only over the hemispherical surface above the ground plane (i.e., 0 < d < TT/2) because
the monopole radiates only through that surface. Hence, the monopole radiates only half as
much power as the dipole with the same current. Thus for a X/4 monopole,

- 18.28/2 (13.29)

and

IP ad

Figure 13.5 The monopole antenna.

"Image

^ Infinite conducting
ground plane
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or

Rmd = 36.5 0 (13.30)

By the same token, the total input impedance for a A/4 monopole is Zin = 36.5 + _/21.25 12.

13.5 SMALL LOOP ANTENNA

The loop antenna is of practical importance. It is used as a directional finder (or search
loop) in radiation detection and as a TV antenna for ultrahigh frequencies. The term
"small" implies that the dimensions (such as po) of the loop are much smaller than X.

Consider a small filamentary circular loop of radius po carrying a uniform current,
Io cos co?, as in Figure 13.6. The loop may be regarded as an elemental magnetic dipole.
The magnetic vector potential at the field point P due to the loop is

A =
/*[/]</! (13.31)

where [7] = 7O cos (cor - /3r') = Re [loe
ji"' ISr)]. Substituting [7] into eq. (13.31), we

obtain A in phasor form as

e~jfir'e

Ait ]L r'
(13.32)

Evaluating this integral requires a lengthy procedure. It can be shown that for a small loop
(po <SC \ ) , r' can be replaced by r in the denominator of eq. (13.32) and As has only <f>-
component given by

^<*s
A-K?

(1 + j$r)e~i&r sin 6 (13.33)

Figure 13.6 The small loop antenna.

N Transmiss ion line
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where S = wpl = loop area. For a loop with N turns, S = Nirpl. Using the fact that
Bs = /xHs = VX A, and V X H S = ju>sEs, we obtain the electric and magnetic fields
from eq. (13.33) as

Ai:
sin I (13.34a)

2m,

4TTT/

/3r3

sin 0 J— + - r -2 )3rJ

ra - Eds - H<f>s - 0

(13.34b)

(13.34c)

(13.34d)

Comparing eqs. (13.5) and (13.6) with eq. (13.34), we observe the dual nature of the field
due to an electric dipole of Figure 13.3 and the magnetic dipole of Figure 13.6 (see Table
8.2 also). At far field, only the 1/r term (the radiation term) in eq. (13.34) remains. Thus at
far field,

4irr
18 sin 6 e

r\2 sin o e

or

(13.35a)

- Hrs - - 0 (13.35b)

where 77 = 120TT for free space has been assumed. Though the far field expressions in
eq. (13.35) are obtained for a small circular loop, they can be used for a small square loop
with one turn (S = a ) , with Af turns (S = Na2) or any small loop provided that the loop di-
mensions are small (d < A/10, where d is the largest dimension of the loop). It is left as an
exercise to show that using eqs. (13.13a) and (13.35) gives the radiation resistance of a
small loop antenna as

(13.36)
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EXAMPLE 13.1 A magnetic field strength of 5 ^A/m is required at a point on 6 = TT/2, 2 km from an
antenna in air. Neglecting ohmic loss, how much power must the antenna transmit if it is

(a) A Hertzian dipole of length X/25?

(b) A half-wave dipole?

(c) A quarter-wave monopole?

(d) A 10-turn loop antenna of radius po = X/20?

Solution:

(a) For a Hertzian dipole,

_ 7o/3 dl sin 6
051 A

4irr

where dl = X/25 or 0 dl = = —. Hence,

5 X 1(T6 =
4TT (2 X 103) 105

or

Io = 0.5 A

'™H = 40TT2 I ^
X

= 158 mW

40x2(0.5)2

(25)2

(b) For a X/2 dipole,

5 x

/o cos I — cos

2irr sin 6

/„ • 1
2TT(2 X

or

/„ = 207T mA

/^/? rad = 1/2(20TT)Z X 10~°(73)
= 144 mW
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(c) For a X/4 monopole,

as in part (b).

(d) For a loop antenna,

2

/ o = 20TT mA

= l/2I2
0Rmd = 1/2(20TT)2 X 10~6(36.56)

= 72 mW

*• /„ S .

r X2
sin 8

For a single turn, S = •Kpo. For ,/V-turn, S = N-wp0. Hence,

or

5 X io - 6 = ^ ^ - ^
2 X 103 L X

10

IOTT2 LPO

= 40.53 mA

— I X 10"3
 =

= 320 7T6 X 100 iol =192-3fi

Z'rad = ^/o^rad = ~ (40.53)2 X 10"6 (192.3)

= 158 mW

PRACTICE EXERCISE 13.1

A Hertzian dipole of length X/100 is located at the origin and fed with a current of
0.25 sin 108f A. Determine the magnetic field at

(a) r = X/5,0 = 30°

(b) r = 200X, 6 = 60°

Answer: (a) 0.2119 sin (10s? - 20.5°) a0 mA/m, (b) 0.2871 sin (l08t + 90°) a0
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EXAMPLE 13.2
An electric field strength of 10 /uV/m is to be measured at an observation point 6 = ir/2,
500 km from a half-wave (resonant) dipole antenna operating in air at 50 MHz.

(a) What is the length of the dipole?

(b) Calculate the current that must be fed to the antenna.

(c) Find the average power radiated by the antenna.

(d) If a transmission line with Zo = 75 0 is connected to the antenna, determine the stand-
ing wave ratio.

Solution:

c 3 X 108

(a) The wavelength X = - = r = 6 m.
/ 50 X 106

Hence, the length of the half-dipole is € = — = 3 m.

(b) From eq. (13.19),

r)Jo cos ( — cos 6

2-wr sin 6

or

2irr sin 9

r)o cos I — cos 6
\2 j

10 X 10" 6 2TT(500 X 103) • (1)

120ir(l)

(c)

= 83.33 mA

Rmd = 73 Q

= \ (83.33)2 X 10-6 X 73

(d)

= 253.5 mW

F = — - (ZL = Zin in this case)
z,£ + Zo

73 + y'42.5 - 75 _ - 2 + y'42.5
73 + y"42.5 + 75 ~
42.55/92.69°

153.98/16.02

148 + y'42.5

= 0.2763/76.67°

s =
1 + | r | 1 + 0.2763

- r 1 - 0.2763
= 1.763
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PRACTICE EXERCISE 13.2

Repeat Example 13.2 if the dipole antenna is replaced by a X/4 monopole.

Answer: (a) 1.5m, (b) 83.33 mA, (c) 126.8 mW, (d) 2.265.

13.6 ANTENNA CHARACTERISTICS

Having considered the basic elementary antenna types, we now discuss some important
characteristics of an antenna as a radiator of electromagnetic energy. These characteristics
include: (a) antenna pattern, (b) radiation intensity, (c) directive gain, (d) power gain.

A. Antenna Patterns

An antenna pattern (or radiation pattern) is a ihrce-climensional plot of iis radia-
tion ai fur field.

When the amplitude of a specified component of the E field is plotted, it is called the field
pattern or voltage pattern. When the square of the amplitude of E is plotted, it is called the
power pattern. A three-dimensional plot of an antenna pattern is avoided by plotting sepa-
rately the normalized \ES\ versus 0 for a constant 4> (this is called an E-plane pattern or ver-
tical pattern) and the normalized \ES\ versus <t> for 8 = TT/2 (called the H-planepattern or
horizontal pattern). The normalization of \ES\ is with respect to the maximum value of the

so that the maximum value of the normalized \ES\ is unity.
For the Hertzian dipole, for example, the normalized |iSj| is obtained from eq. (13.7) as

= |sin0| (13.37)

which is independent of <t>. From eq. (13.37), we obtain the £-plane pattern as the polar
plot of j{8) with 8 varying from 0° to 180°. The result is shown in Figure 13.7(a). Note that
the plot is symmetric about the z-axis (8 = 0). For the /f-plane pattern, we set 8 = TT/2 SO
that/(0) = 1, which is circle of radius 1 as shown in Figure 13.7(b). When the two plots of
Figures 13.7(a) and (b) are combined, we have a three-dimensional field pattern of Figure
13.7(c), which has the shape of a doughnut.

A plot of the time-average power, |2Pave| = 2Pave, for a fixed distance r is the power
pattern of the antenna. It is obtained by plotting separately 2Pave versus 8 for constant <j> and
Ŝ ave versus 4> for constant 8.

For the Hertzian dipole, the normalized power pattern is easily obtained from eqs.
(13.37) or (13.9) as

/2(0) = sin2 0 (13.38)

which is sketched in Figure 13.8. Notice that Figures 13.7(b) and 13.8(b) show circles
because fi8) is independent of <j> and that the value of OP in Figure 13.8(a) is the relative
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(a)

(c)

Figure 13.7 Field patterns of the Hertzian dipole: (a) normalized £-plane or
vertical pattern (4> = constant = 0), (b) normalized ff-plane or horizontal
pattern (6 = TT/2), (C) three-dimensional pattern.

Polar axis

(a) (b)

Figure 13.8 Power pattern of the Hertzian dipole: (a) 4> = constant = 0;
(b) 6 = constant = T/2.
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average power for that particular 6. Thus, at point Q (0 = 45°), the average power is one-
half the maximum average power (the maximum average power is at 6 = TT/2).

B. Radiation Intensity

The radiation intensity of an antenna is defined as

me, 0) = r2 g>a. (13.39)

From eq. (13.39), the total average power radiated can be expressed as

Sin 6 dd d$

= U{d,<j>) sin dd$d<t> (13.40)

2ir fir

U(6, </>) dU
•=o Je=o

where dQ = sin 9 dd d(f> is the differential solid angle in steradian (sr). Hence the radiation
intensity U(6, <f>) is measured in watts per steradian (W/sr). The average value of U(d, <j>) is
the total radiated power divided by 4TT sr; that is,

rrad

4?T
(13.41)

C. Directive Gain

Besides the antenna patterns described above, we are often interested in measurable quan-
tities such as gain and directivity to determine the radiation characteristics of an antenna.

The directive gain (i/0.6) of itn unlenna is a measure of the concentration of the ra-
diated power in a particular direction (e. <p).

It may be regarded as the ability of the antenna to direct radiated power in a given direc-
tion. It is usually obtained as the ratio of radiation intensity in a given direction (6, <f>) to the
average radiation intensity, that is

(13.42)
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By substituting eq. (13.39) into eq. (13.42), 0 ^ may be expressed in terms of directive
gain as

(13.43)=
ave . ?

Airr
The directive gain GJfi, <j>) depends on antenna pattern. For the Hertzian dipole (as well as
for A/2 dipole and X/4 monopole), we notice from Figure 13.8 that 2Pave is maximum at
6 = 7r/2 and minimum (zero) at 6 = 0 or TT. Thus the Hertzian dipole radiates power in a
direction broadside to its length. For an isotropic antenna (one that radiates equally in all
directions), Gd = 1. However, such an antenna is not a physicality but an ideality.

The directivity I) of an antenna is ihe ratio of the maximum radiation intensity to the
average radiaiion intensity.

Obviously, D is the maximum directive gain Gd, max. Thus

D = —— = Gd, max (13.44a)

or

D =
•Prad

(13.44b)

D = 1 for an isotropic antenna; this is the smallest value D can have. For the Hertzian
dipole,

G/6,<j)) = 1.5 sin2 0, D = 1.5.

For the A/2 dipole,

(13.45)

Gd(d, </>) =

where i\ = 120x, /?rad = 73 fi, and

), D=\M
rad

IT
COS | — COS I

sin0

(13.46)

(13.47)

D. Power Gain

Our definition of the directive gain in eq. (13.42) does not account for the ohmic power
loss P( of the antenna. Pt is due to the fact that the antenna is made of a conductor with
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finite conductivity. As illustrated in Figure 13.9, if Pin is the total input power to the
antenna,

Pin — +

+
(13.48)

where 7in is the current at the input terminals and R( is the loss or ohmic resistance of the
antenna. In other words, Pin is the power accepted by the antenna at its terminals during the
radiation process, and Prad is the power radiated by the antenna; the difference between the
two powers is P(, the power dissipated within the antenna.

We define the power gain Gp(6, <j>) of the antenna as

(13.49)

The ratio of the power gain in any specified direction to the directive gain in that direction
is referred to as the radiation efficiency v\r of the antennas, that is

GP
Vr =

Introducing eq. (13.48) leads to

Vr =
Pr,ad Vad

Rf
(13.50)

For many antennas, r\r is close to 100% so that GP — Gd. It is customary to express direc-
tivity and gain in decibels (dB). Thus

D(dB) = 101og,0£»

G (dB) = 10 log10 G

(13.51a)

(13.51b)

It should be mentioned at this point that the radiation patterns of an antenna are
usually measured in the far field region. The far field region of an antenna is commonly
taken to exist at distance r > rmin where

2dz

(13.52)

Figure 13.9 Relating P-m, P(, and Prad.

Prad
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and d is the largest dimension of the antenna. For example, d = I for the electric dipole
antenna and d = 2p0 for the small loop antenna.

EXAMPLE 13.3 Show that the directive gain of the Hertzian dipole is

Gd(0, <£) = 1.5 sin2 6

and that of the half-wave dipole is

cos ( — cos 6
Gd(9,<t>) = 1 - 6 4 —

sin (

Solution:

From eq. (13.42),

, <f>) =
4TT/2(0)

f (6) d

(a) For the Hertzian dipole,

4TT sin2 6

sin3 6 d6 d<j)

4TT sin2 6

2TT (4/3)

= 1.5 sin2 6

as required.

(b) For the half-wave dipole,

4TT COS — cos

sin2

2lr rir cos I — cos 6 I dO d(f>

G/.9, <t>) =

From eq. (13.26), the integral in the denominator gives 27r(1.2188). Hence,

G/.8, 0) =
4TT cos2! — cos 9

sin20 (1.2188)

= 1.64
cos I — cos I

sin20

as required.
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PRACTICE EXERCISE 13.3

Calculate the directivity of

(a) The Hertzian monopole

(b) The quarter-wave monopole

Answer: (a) 3, (b) 3.28.

EXAMPLE 13.4 Determine the electric field intensity at a distance of 10 km from an antenna having a di-
rective gain of 5 dB and radiating a total power of 20 kW.

Solution:

or

From eq. (13.43),

But

Hence,

5 = Gd(dB) = 101og10Grf

0.5 = log10 Gd -

GdPrad

= lO05 = 3.162

at, =
u ave

op =
° ave

4-irr

\E,
2V

1207T(3.162)(20 X 103)
E = =

2irr2 2TT[10 X 103]2

Es\ = 0.1948 V/m

PRACTICE EXERCISE 13.4

A certain antenna with an efficiency of 95% has maximum radiation intensity of
0.5 W/sr. Calculate its directivity when

(a) The input power is 0.4 W

(b) The radiated power is 0.3 W

Answer: (a) 16.53, (b) 20.94.



EXAMPLE 13.5
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The radiation intensity of a certain antenna is

2 sin d sin3 0, 0 < 0 < TT, 0 < 0 < TT

611

U(8, 0) =
0, elsewhere

Determine the directivity of the antenna.

Solution:

The directivity is defined as

D =
ua.

From the given U,

= 2

_ _1_

1

~ 4TT

_ J_
~ 2TT

9 «i
=o •/e=o

s in 0 s in <j> s in 0 ̂  d<j>

s i n ' <j>d<t>
o

= ^ - - (1 - cos 20) d0 (1 - cosz 0) rf(-cos (A)27r 4 2 4
sin

2TT2

27r\2j\3j 3

/ COS (f)
I cos io l 3

Hence

Z) =
(1/3)

— 6

PRACTICE EXERCISE 13.5

Evaluate the directivity of an antenna with normalized radiation intensity

fsin 0, 0 < 0 < TT/2, 0 < 0 < 2TT
[0, otherwise

Answer: 2.546.
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13.7 ANTENNA ARRAYS

In many practical applications (e.g., in an AM broadcast station), it is necessary to design
antennas with more energy radiated in some particular directions and less in other direc-
tions. This is tantamount to requiring that the radiation pattern be concentrated in the di-
rection of interest. This is hardly achievable with a single antenna element. An antenna
array is used to obtain greater directivity than can be obtained with a single antenna
element.

An antenna array is a group of radiating elements arranged so us to produce some
particular radiation characteristics.

It is practical and convenient that the array consists of identical elements but this is
not fundamentally required. We shall consider the simplest case of a two-element
array and extend our results to the more complicated, general case of an N-element
array.

Consider an antenna consisting of two Hertzian dipoles placed in free space along the
z-axis but oriented parallel to the ;t-axis as depicted in Figure 13.10. We assume that the
dipole at (0, 0, d/2) carries current Ils = I0/cx and the one at (0, 0, -d/2) carries current
hs = 4 / 0 . where a is the phase difference between the two currents. By varying the
spacing d and phase difference a, the fields from the array can be made to interfere con-
structively (add) in certain directions of interest and interfere destructively (cancel) in
other directions. The total electric field at point P is the vector sum of the fields due to the
individual elements. If P is in the far field zone, we obtain the total electric field at P from
eq. (13.7a) as

-'Is

COS0-,
(13.53)

Note that sin 6 in eq. (13.7a) has been replaced by cos 6 since the element of Figure 13.3 is
z-directed whereas those in Figure 13.10 are x-directed. Since P is far from the array,

Figure 13.10 A two-element array.
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i. In the amplitude, we can set rx — r = r2 but in the phase,

d
rx — r cos I

r2 — r + r cos i

(13.54a)

(13.54b)

Thus eq. (13.53) becomes

4x r
->a/2j

4?r r cos cos \-
L2

cos

(13.55)

Comparing this with eq. (13.7a) shows that the total field of an array is equal to the field of
single element located at the origin multiplied by an array factor given by

AF = 2 cos | - (/tacos 8 + u)\ eja/2 (13.56)

Thus, in general, the far field due to a two-element array is given by

E (total) = (E due to single element at origin) X (array factor) (13.57)

Also, from eq. (13.55), note that |cos d\ is the radiation pattern due to a single element
whereas the normalized array factor, |cos[l/2(|8Jcos 6 + a)]\, is the radiation pattern of
the array if the elements were isotropic. These may be regarded as "unit pattern" and
"group pattern," respectively. Thus the "resultant pattern" is the product of the unit pattern
and the group pattern, that is,

Resultant pattern = Unit pattern X Group pattern (13.58)

This is known as pattern multiplication. It is possible to sketch, almost by inspection, the
pattern of an array by pattern multiplication. It is, therefore, a useful tool in the design of
an array. We should note that while the unit pattern depends on the type of elements the
array is comprised of, the group pattern is independent of the element type so long as the
spacing d and phase difference a, and the orientation of the elements remain the same.

Let us now extend the results on the two-element array to the general case of an N-
element array shown in Figure 13.11. We assume that the array is linear in that the ele-
ments are spaced equally along a straight line and lie along the z-axis. Also, we assume that
the array is uniform so that each element is fed with current of the same magnitude but of
progressive phase shift a, that is, Ils = /O//0,12s = Io/u, I3s = 7o/2q, and so on. We are
mainly interested in finding the array factor; the far field can easily be found from eq.
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Figure 13.11 An iV-element uniform linear array.

- d cos 6

(13.57) once the array factor is known. For the uniform linear array, the array factor is the
sum of the contributions by all the elements. Thus,

AF = 1 + eJ4r + ej2>p + + eAN-1)4,

where

= (3d cos 6 + a

(13.59)

(13.60)

In eq. (13.60), fi = 2x/X, d and a are, respectively, the spacing and interelement phase
shift. Notice that the right-hand side of eq. (13.59) is a geometric series of the form

1 + x + x2 + x3

Hence eq. (13.59) becomes

1 - x

AF =
1 -

(13.61)

(13.62)

which can be written as

AF =
_ e-jN4,/2

sin (Aty/2)

sin (\l//2)

(13.63)

The phase factor eJ(N l)*n would not be present if the array were centered about the origin.
Neglecting this unimportant term,

(13.64)AF = \b = fid cos 6 + a
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Note that this equation reduces to eq. (13.56) when N = las, expected. Also, note the fol-
lowing:

1. AF has the maximum value of TV; thus the normalized AF is obtained by dividing
AF by N. The principal maximum occurs when \J/ = 0, that is

0 = fid cos 6 + a or

2. AF has nulls (or zeros) when AF = 0, that is

Nip

cos 0 = — a

Yd

—- = ±/br, k= 1,2, 3 , . . .

(13.65)

(13.66)

where k is not a multiple of N.
3. A broadside array has its maximum radiation directed normal to the axis of the

array, that is, \p = 0, $ = 90° so that a = 0.
4. An end-fire array has its maximum radiation directed along the axis of the array,

that is, \p = 0, B = so that a =

These points are helpful in plotting AF. For N=2,3, and 4, the plots of AF are
sketched in Figure 13.12.

EXAMPLE 13.6 For the two-element antenna array of Figure 13.10, sketch the normalized field pattern
when the currents are:

(a) Fed in phase (a = 0), d = A/2

(b) Fed 90° out of phase (a = TT/2), d = A/4

Solution:

The normalized field of the array is obtained from eqs. (13.55) to (13.57) as

cos 6 cos - (0d cos 8 + a)

(a) If a = 0, d = A/2,13d = - ^ - = TT. Hence,
A 2

1
resultant
pattern

= |cos0|

1
= unit X

pattern

cos — (cos 6)

1
group
pattern

The sketch of the unit pattern is straightforward. It is merely a rotated version of that
in Figure 13.7(a) for the Hertzian dipole and is shown in Figure 13.13(a). To sketch a
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0 TT/2 IT 3TT/2 2TT

Figure 13.12 Array factor for uniform linear array.

1.08 T-V^S.—

group pattern requires that we first determine its nulls and maxima. For the nulls (or
zeros),

(-K \ i „ IT 3f
cos — cos 0 = 0 -»— cos 0 = ± —, ± — , . . .

\2 ) 2 2 2

or

For the maxima,

or

0 = 0°, 180°

cos ( — cos 0 ) = 1 —» cos 0 = 0

0 = 90°



unit pattern
(a)

x X
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group pattern
(b)

resultant pattern
(c)

Figure 13.13 For Example 13.6(a); field patterns in the plane containing the
axes of the elements.

The group pattern is as shown in Figure 13.12(b). It is the polar plot obtained by sketching

for0 = 0°, 5°, 10°, 15°,. . . . , 360° and incorporating the nulls andcos ( — cos 0

maxima at 0 = 0°, 180° and 0 = 90°, respectively. Multiplying Figure 13.13(a) with
Figure 13.13(b) gives the resultant pattern in Figure 13.13(c). It should be observed that
the field patterns in Figure 13.13 are in the plane containing the axes of the elements. Note
that: (1) In the yz-plane, which is normal to the axes of the elements, the unit pattern (= 1)
is a circle [see Figure 13.7(b)] while the group pattern remains as in Figure 13.13(b); there-
fore, the resultant pattern is the same as the group pattern in this case. (2) In the xy-plane,
0 = 7r/2, SO the unit pattern vanishes while the group pattern (= 1) is a circle.

(b) If a = TT/2, d = A/4, and fid = — - = -
A 4 2

c o s — ( c o s 0 + 1 )

I
group
pattern

I i
resultant = unit X
pattern pattern

The unit pattern remains as in Figure 13.13(a). For the group pattern, the null occurs when

COS j (1 + COS 6>) = 0 -> - (1 + COS 0) = ± y , ±-y, . . .

or

cos 8 = 1 -» 0 = 0

The maxima and minima occur when

— cos - (1 + cos 0) = 0 -» sin 0 sin - (1 + cos 0) = 0
dd I 4 J 4

sin0 = O->0 = 0°, 180°
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x X

unit pattern
(a)

group pattern
(b)

resultant pattern
(c)

Figure 13.14 For Example 13.6(b); field patterns in the plane containing the axes of
the elements.

and

sin — (1 + cos 6) = 0 —> cos I= - 1 or 6 = 180°

Each field pattern is obtained by varying 0 = 0°, 5°, 10°, 15°,. . ., 180°. Note that
8 = 180° corresponds to the maximum value of AF, whereas d = 0° corresponds to the
null. Thus the unit, group, and resultant patterns in the plane containing the axes of the el-
ements are shown in Figure 13.14. Observe from the group patterns that the broadside
array (a = 0) in Figure 13.13 is bidirectional while the end-fire array (a = (3d) in Figure
13.14 is unidirectional.

PRACTICE EXERCISE 13.6

Repeat Example 13.6 for cases when:

(a) a = IT, d = A/2, (b) a = -TT/2, d = A/4.

Answer: See Figure 13.15.

EXAMPLE 13.7 Consider a three-element array that has current ratios 1:2:1 as in Figure 13.16(a). Sketch
the group pattern in the plane containing the axes of the elements.

Solution:

For the purpose of analysis, we split the middle element in Figure 13.16(a) carrying current
27/0° into two elements each carrying current 1/0^. This results in four elements instead
of three as shown in Figure 13.16(b). If we consider elements 1 and 2 as a group and ele-
ments 3 and 4 as another group, we have a two-element array of Figure 13.16(c). Each
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x X

x X

(a)

(b)

Figure 13.15 For Practice Exercise 13.6.

//0 2IlQ_ //O Figure 13.16 For Example 13.7: (a) a three-element array
• ,_ * ^ ; i J with current ratios 1:2:1; (b) and (c) equivalent two-element

-X/2- • X / 2 -

(a)
arrays.

3 *

2»

(b)

4

1,2 3 , 4
* *

(c)
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group is a two-element array with d — X/2, a = 0, that the group pattern of the two-
element array (or the unit pattern for the three-element array) is as shown in Figure
13.13(b). The two groups form a two-element array similar to Example 13.6(a) with
d = X/2, a = 0, so the group pattern is the same as that in Figure 13.13(b). Thus, in this
case, both the unit and group patterns are the same pattern in Figure 13.13(b). The resultant
group pattern is obtained in Figure 13.17(c). We should note that the pattern in Figure
13.17(c) is not the resultant pattern but the group pattern of the three-element array. The re-
sultant group pattern of the array is Figure 13.17(c) multiplied by the field pattern of the
element type.

An alternative method of obtaining the resultant group pattern of the three-element
array of Figure 13.16 is following similar steps taken to obtain eq. (13.59). We obtain the
normalized array factor (or the group pattern) as

(AF)n = -

_\_
~ 4
_ J_
~ 2

2el*

e'1*

c o s -

where yj/ = fid cos d + a if the elements are placed along the z-axis but oriented parallel to
2TT X

the x-axis. Since a = 0, d = X/2, fid = — • — = x,
X 2

(AF)n

{AF)n

I
resultant

group pattern

cos ( — cos 6

cos | — cos i

4
unit

pattern
X

cos ( — cos 0

4
group
pattern

The sketch of these patterns is exactly what is in Figure 13.17.
If two three-element arrays in Figure 13.16(a) are displaced by X/2, we obtain a four-

element array with current ratios 1:3:3:1 as in Figure 13.18. Two of such four-element

Figure 13.17 For Example 13.7; obtain-
ing the resultant group pattern of the
three-element array of Figure 13.16(a).

unit pattern

(a)

roup pattern

(b)

resultant group
pattern

(0
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3//0_

-X/2-

/ [0_ Figure 13.18 A four-element
array with current ratios 1:3:3:1;
for Practice Exercise 13.7.

arrays, displaced by X/2, give a five-element array with current ratios 1:4:6:4:1. Contin-
uing this process results in an /^-element array, spaced X/2 and (N - l)X/2 long, whose
current ratios are the binomial coefficients. Such an array is called a linear binomial army.

PRACTICE EXERCISE 13.7

(a) Sketch the resultant group pattern for the four-element array with current ratios
1:3:3:1 shown in Figure 13.18.

(b) Derive an expression for the group pattern of a linear binomial array of N ele-
ments. Assume that the elements are placed along the z-axis, oriented parallel to the
;t-axis with spacing d and interelement phase shift a.

Answer: (a) See Figure 13.19, (b) c o s - , where if/ — fid cos d + a.

Figure 13.19 For Practice Exercise 13.7(a).

'13.8 EFFECTIVE AREA AND THE FRIIS EQUATION

In a situation where the incoming EM wave is normal to the entire surface of a receiving
antenna, the power received is

Pr = (13.67)

But in most cases, the incoming EM wave is not normal to the entire surface of the
antenna. This necessitates the idea of the effective area of a receiving antenna.

The concept of effective area or effective aperture (receiving cross section of an
antenna) is usually employed in the analysis of receiving antennas.

The effective area A, of u receiving antenna is the ratio of the time-average power
received Pr (or delivered to (he load, to be strict) to the time-average power density
;?„,, of the incident wave at the antenna.
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That is

Pr
Ob
•J avp

(13.68)

From eq. (13.68), we notice that the effective area is a measure of the ability of the antenna
to extract energy from a passing EM wave.

Let us derive the formula for calculating the effective area of the Hertzian dipole
acting as a receiving antenna. The Thevenin equivalent circuit for the receiving antenna is
shown in Figure 13.20, where Voc is the open-circuit voltage induced on the antenna termi-
nals, Zin = 7?rad + jXin is the antenna impedance, and ZL = RL + jXL is the external load
impedance, which might be the input impedance to the transmission line feeding the
antenna. For maximum power transfer, ZL = Z*n and XL = —Xin. The time-average power
delivered to the matched load is therefore

'rad

|v«
(13.69)

8 D
"ra .

For the Hertzian dipole, Rmd = S0ir2(dl/X)2 and yoc = Edl where E is the effective field
strength parallel to the dipole axis. Hence, eq. (13.69) becomes

Pr =
E\2

640TT2

The time-average power at the antenna is

_
ave "

2TJ0 240TT

Inserting eqs. (13.70) and (13.71) in eq. (13.68) gives

3X2 X2

A L 5

(13.70)

(13.71)

or

(13.72)

Figure 13.20 Thevenin equivalent of a receiving
antenna.
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where D = 1.5 is the directivity of the Hertzian dipole. Although eq. (13.72) was derived
for the Hertzian dipole, it holds for any antenna if D is replaced by GJfi, (j>). Thus, in
general

(13.73)

Now suppose we have two antennas separated by distance r in free space as shown in
Figure 13.21. The transmitting antenna has effective area Aet and directive gain Gdt, and
transmits a total power P, (= Prli<i). The receiving antenna has effective area of Aer and di-
rective gain Gdn and receives a total power of Pr. At the transmitter,

4rU

P

or

op =
ave

p
(13.74)

By applying eqs. (13.68) and (13.73), we obtain the time-average power received as

P = Op A = ^— C,,
r r ^ ave ^er * ^dr

Substituting eq. (13.74) into eq. (13.75) results in

(13.75)

(13.76)

This is referred to as the Friis transmission formula. It relates the power received by one
antenna to the power transmitted by the other, provided that the two antennas are separated
by r > 2d2l\, where d is the largest dimension of either antenna [see eq. 13.52)]. There-
fore, in order to apply the Friis equation, we must make sure that the two antennas are in
the far field of each other.

Transmitter Receiver

H r-

Figure 13.21 Transmitting and receiving antennas in free space.
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EXAMPLE 13.8
Find the maximum effective area of a A/2 wire dipole operating at 30 MHz. How much
power is received with an incident plane wave of strength 2 mV/m.

Solution:

c 3 X 108

A = - = T = 10m
/ 30 X 106

Gd(6, 0)raax = 1.64

102

(1.64)= 13.05 m2

p = Op A - — A

_ V

( 2 X 1 0 )

= 1.64/(0)

240TT
13.05 = 71.62 nW

PRACTICE EXERCISE 13.8

Determine the maximum effective area of a Hertzian dipole of length 10 cm operat-
ing at 10 MHz. If the antenna receives 3 [iW of power, what is the power density of
the incident wave?

Answer: 1.074 m2, 2.793 MW/m2

EXAMPLE 13.9
The transmitting and receiving antennas are separated by a distance of 200 A and have di-
rective gains of 25 and 18 dB, respectively. If 5 mW of power is to be received, calculate
the minimum transmitted power.

Solution:

Given that Gdt (dB) = 25 dB = 10 log10 Gdt,

Gdt = 1025 = 316.23

Similarly,

Gdr (dB) = 18 db or Gdr = 1 0 ° = 63.1
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Using the Friis equation, we have

or

P = P

Pr ~ GdrGdt [ — J P,

47rr12

= 5 x 10~3

= 1.583 W

J GdrG
dt4TT X 200 X

X

1
(63.1X316.23)

PRACTICE EXERCISE 13.9

An antenna in air radiates a total power of 100 kW so that a maximum radiated elec-
tric field strength of 12 mV/m is measured 20 km from the antenna. Find: (a) its di-
rectivity in dB, (b) its maximum power gain if r]r =

Answer: (a) 3.34 dB, (b) 2.117.

13.9 THE RADAR EQUATION

Radars are electromagnetic devices used for detection and location of objects. The term
radar is derived from the phrase radio detection and ranging. In a typical radar system
shown in Figure 13.22(a), pulses of EM energy are transmitted to a distant object. The
same antenna is used for transmitting and receiving, so the time interval between the trans-
mitted and reflected pulses is used to determine the distance of the target. If r is the dis-

k Target a

Figure 13.22 (a) Typical radar system,
(b) simplification of the system in
(a) for calculating the target cross
section a.

(b)
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tance between the radar and target and c is the speed of light, the elapsed time between the
transmitted and received pulse is 2r/c. By measuring the elapsed time, r is determined.

The ability of the target to scatter (or reflect) energy is characterized by the scattering
cross section a (also called the radar cross section) of the target. The scattering cross
section has the units of area and can be measured experimentally.

The scattering cross section is the equivalent area intercepting that amount ol
power that, when scattering isotropicall). produces at the radar a power density,
which is equal to thai scattered (or reflected) by the actual target.

That is,

= lim
4-irr2

or

<3/>
a = lim 4xr2 —-

9>
(13.77)

where SP, is the incident power density at the target T while 3 \ is the scattered power
density at the transreceiver O as in Figure 13.22(b).

From eq. (13.43), the incident power density 2P, at the target Tis

op = op = d p J
^ i "^ ave , 9 * rad

4TIT

The power received at transreceiver O is

(13.78)

or

—
Aer

(13.79)

Note that 2P, and 9 \ are the time-average power densities in watts/m2 and Prad and Pr are
the total time-average powers in watts. Since Gdr = Gdt — Gd and Aer = Aet = Ae, substi-
tuting eqs. (13.78) and (13.79) into eq. (13.77) gives

a = (4irr2)2 1
Gd

or

AeaGdPmd

(4irr2)2

(13.80a)

(13.80b)
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TABLE 13.1 Designations
of Radar Frequencies

Designation

UHF

L

S

C

X

Ku

K

Millimeter

Frequency

300-1000 MHz

1000-2000 MHz

2000^000 MHz

4000-8000 MHz

8000-12,500 MHz

12.5-18 GHz

18-26.5 GHz
>35 GHz

From eq. (13.73), Ae = \2GJAi;. Hence,

(13.81)

This is the radar transmission equation for free space. It is the basis for measurement of
scattering cross section of a target. Solving for r in eq. (13.81) results in

(13.82)

Equation (13.82) is called the radar range equation. Given the minimum detectable power
of the receiver, the equation determines the maximum range for a radar. It is also useful for
obtaining engineering information concerning the effects of the various parameters on the
performance of a radar system.

The radar considered so far is the monostatic type because of the predominance of this
type of radar in practical applications. A bistatic radar is one in which the transmitter and
receiver are separated. If the transmitting and receiving antennas are at distances rx and r2

from the target and Gdr ¥= Gdt, eq. (13.81) for bistatic radar becomes

GdtGdr

4TT
rad (13.83)

Radar transmission frequencies range from 25 to 70,000 MHz. Table 13.1 shows radar
frequencies and their designations as commonly used by radar engineers.

EXAMPLE 13.10
An S-band radar transmitting at 3 GHz radiates 200 kW. Determine the signal power
density at ranges 100 and 400 nautical miles if the effective area of the radar antenna is
9 m2. With a 20-m2 target at 300 nautical miles, calculate the power of the reflected signal
at the radar.
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Solution:

The nautical mile is a common unit in radar communications.

1 nautical mile (nm) = 1852 m

c 3 X 108

/ 3 X 10-

r -
X2 et (0.1):

= 0.1m

9 = 3600?r

For r = 100 nm = 1.852 X 105
m

ad 3600TT X 200 X 103

4TIT2 4TT(1 .852) 2 X 1010

= 5.248 mW/m2

For r = 400 nm = 4 (1.852 X 105) m

5.248

(4)2 = 0.328 mW/m2

Aea Gd P r a d

Using eq. (13.80b)

where r = 300 nm = 5.556 X 105 m

_ 9 X 20 X 36007T X 200 X 103

[4TT X 5.5562]2 X 1020

The same result can be obtained using eq. (13.81).

= 2.706 X 10"14W

PRACTICE EXERCISE 13.10

A C-band radar with an antenna 1.8 m in radius transmits 60 kW at a frequency of
6000 MHz. If the minimum detectable power is 0.26 mW, for a target cross section
of 5 m2, calculate the maximum range in nautical miles and the signal power density
at half this range. Assume unity efficiency and that the effective area of the antenna
is 70% of the actual area.

Answer: 0.6309 nm, 500.90 W/m2.
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SUMMARY 1. We have discussed the fundamental ideas and definitions in antenna theory. The basic
types of antenna considered include the Hertzian (or differential length) dipole, the
half-wave dipole, the quarter-wave monopole, and the small loop.

2. Theoretically, if we know the current distribution on an antenna, we can find the re-
tarded magnetic vector potential A, and from it we can find the retarded electromag-
netic fields H and E using

H = V X — , E = T, H X a*

The far-zone fields are obtained by retaining only \lr terms.
3. The analysis of the Hertzian dipole serves as a stepping stone for other antennas. The

radiation resistance of the dipole is very small. This limits the practical usefulness of
the Hertzian dipole.

4. The half-wave dipole has a length equal to X/2. It is more popular and of more practi-
cal use than the Hertzian dipole. Its input impedance is 73 + J42.5 fi.

5. The quarter-wave monopole is essentially half a half-wave dipole placed on a con-
ducting plane.

6. The radiation patterns commonly used are the field intensity, power intensity, and ra-
diation intensity patterns. The field pattern is usually a plot of \ES\ or its normalized
form flft). The power pattern is the plot of 2Pave or its normalized form/2(0).

7. The directive gain is the ratio of U(9, <f>) to its average value. The directivity is the
maximum value of the directive gain.

8. An antenna array is a group of radiating elements arranged so as to produce some
particular radiation characteristics. Its radiation pattern is obtained by multiply-
ing the unit pattern (due to a single element in the group) with the group pattern,
which is the plot of the normalized array factor. For an TV-element linear uniform
array,

AF =

where \j/ = 13d cos 9 + a, 0 = 2%/X, d = spacing between the elements, and a = in-
terelement phase shift.

9. The Friis transmission formula characterizes the coupling between two antennas in
terms of their directive gains, separation distance, and frequency of operation.

10. For a bistatic radar (one in which the transmitting and receiving antennas are sepa-
rated), the power received is given by

4TT
r
J

aPn•ad

For a monostatic radar, r, = r2 = r and Gdt = Gdr.
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13.1 An antenna located in a city is a source of radio waves. How much time does it take the
wave to reach a town 12,000 km away from the city?

(a) 36 s

(b) 20 us

(c) 20 ms

(d) 40 ms

(e) None of the above

13.2 In eq. (13.34), which term is the radiation term?

(a) 1/rterm

(b) l/r2term

(c) IIr" term

(d) All of the above

13.3 A very small thin wire of length X/100 has a radiation resistance of

(a) = 0 G

(b) 0.08 G

(c) 7.9 G

(d) 790 0

13.4 A quarter-wave monopole antenna operating in air at frequency 1 MHz must have an
overall length of

(a) € » X

(b) 300 m

(c) 150 m

(d) 75 m

(e) ( <sC X

13.5 If a small single-turn loop antenna has a radiation resistance of 0.04 G, how many turns
are needed to produce a radiation resistance of 1 G?

(a) 150

(b) 125

(c) 50

(d) 25

(e) 5
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13.6 At a distance of 8 km from a differential antenna, the field strength is 12 /iV/m. The field
strength at a location 20 km from the antenna is

(a) 75/xV/m

(b) 30,xV/m

(c) 4.8/xV/m

(d) 1.92/zV/m

13.7 An antenna has f/max = 10 W/sr, l/ave = 4.5 W/sr, and i\r = 95%. The input power to
the antenna is

(a) 2.222 W

(b) 12.11 W

(c) 55.55 W

(d) 59.52 W

13.8 A receiving antenna in an airport has a maximum dimension of 3 m and operates at 100
MHz. An aircraft approaching the airport is 1/2 km from the antenna. The aircraft is in
the far field region of the antenna.

(a) True

(b) False

13.9 A receiving antenna is located 100 m away from the transmitting antenna. If the effective
area of the receiving antenna is 500 cm2 and the power density at the receiving location
is 2 mW/m2, the total power received is:

(a) lOnW

(b) 100 nW

(c) 1/xW

(d) 10 ^W

(e) 100 ^W

13.10 Let R be the maximum range of a monostatic radar. If a target with radar cross section of
5 m2 exists at R/2, what should be the target cross section at 3R/2 to result in an equal
signal strength at the radar?

(a) 0.0617 m2

(b) 0.555 m2

(c) 15 m2

(d) 45 m2

(e) 405 m2

Answers: 13.Id, 13.2a, 13.3b, 13.4d, 13.5e, 13.6c, 13.7d, 13.8a, 13.9e, 13.10e.
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PROBLEMS I
13.1 The magnetic vector potential at point P(r, 8, <j>) due to a small antenna located at the

origin is given by

50 e->Br

A

where r2 = x2 + y2 + z2• Find E(r, 6, <j>, t) and H(r, d, <j>, i) at the far field.

13.2 A Hertzian dipole at the origin in free space has di = 20 c m and 7 = 1 0 cos 2irl07t A ,
find \E6s\ at the distant point (100 , 0, 0 ) .

13.3 A 2-A source operating at 300 MHz feeds a Hertzian dipole of length 5 mm situated at
the origin. Find Es and H,. at (10, 30°, 90°).

13.4 (a) Instead of a constant current distribution assumed for the short dipole of Section

13.2, assume a triangular current distribution 7, = 7O I 1 — j shown in Figure

13.23. Show that

?rad = 2 0 7TZ I -

which is one-fourth of that in eq. (13.13). Thus Rmd depends on the current distribu-
tion.

(b) Calculate the length of the dipole that will result in a radiation resistance of 0.5 0.

13.5 An antenna can be modeled as an electric dipole of length 5 m at 3 MHz. Find the radia-
tion resistance of the antenna assuming a uniform current over its length.

13.6 A half-wave dipole fed by a 50-0 transmission line, calculate the reflection coefficient
and the standing wave ratio.

13.7 A 1-m-long car radio antenna operates in the AM frequency of 1.5 MHz. How much
current is required to transmit 4 W of power?

Figure 13.23 Short dipole antenna with triangular current distri-
bution; for Problem 13.4.
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*13.8 (a) Show that the generated far field expressions for a thin dipole of length € carrying si-
nusoidal current Io cos @z are

,-/3rCos^ Yc0St)J ~ c o s y
2-wr sin 8

[Hint: Use Figure 13.4 and start with eq. (13.14).]

(b) On a polar coordinate sheet, plot fifi) in part (a) for € = X, 3X/2 and 2X.

*13.9 For Problem 13.4.

(a) Determine E, and H s at the far field

(b) Calculate the directivity of the dipole

*13.10 An antenna located on the surface of a flat earth transmits an average power of 200 kW.
Assuming that all the power is radiated uniformly over the surface of a hemisphere with
the antenna at the center, calculate (a) the time-average Poynting vector at 50 km, and
(b) the maximum electric field at that location.

13.11 A 100-turn loop antenna of radius 20 cm operating at 10 MHz in air is to give a 50 mV/m
field strength at a distance 3 m from the loop. Determine

(a) The current that must be fed to the antenna

(b) The average power radiated by the antenna

13.12 Sketch the normalized E-field and //-field patterns for

(a) A half-wave dipole

(b) A quarter-wave monopole

13.13 Based on the result of Problem 13.8, plot the vertical field patterns of monopole antennas
of lengths € = 3X/2, X, 5X/8. Note that a 5X/8 monopole is often used in practice.

13.14 In free space, an antenna has a far-zone field given by

where /3 = wV/xoeo. Determine the radiated power.

13.15 At the far field, the electric field produced by an antenna is

E s = — e~j/3r cos 6 cos <j> az

Sketch the vertical pattern of the antenna. Your plot should include as many points as
possible.
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13.16 For an Hertzian dipole, show that the time-average power density is related to the radia-
tion power according to

1.5 sin20 _

4irr

13.17 At the far field, an antenna produces

2 sin 6 cos 4>
ave a r W/m2, 0 < 6 < x, 0 < </> < x/2

Calculate the directive gain and the directivity of the antenna.

13.18 From Problem 13.8, show that the normalized field pattern of a full-wave (€ = X)
antenna is given by

cos(x cos 6) + 1
sin0

Sketch the field pattern.

13.19 For a thin dipole A/16 long, find: (a) the directive gain, (b) the directivity, (c) the effec-
tive area, (d) the radiation resistance.

13.20 Repeat Problem 13.19 for a circular thin loop antenna A/12 in diameter.

13.21 A half-wave dipole is made of copper and is of diameter 2.6 mm. Determine the effi-
ciency of the dipole if it operates at 15 MHz.
Hint: Obtain R( from R(/Rdc = a/28; see Section 10.6.

13.22 Find C/ave, t/max, and D if:

(a) Uifi, 4>) = sin2 20, 0 < 0 < x, 0 < 0 < 2TT

(b) Uifi, <t>) = 4 esc2 20, TT/3 < 0 < x/2, 0 < <j> < x

(c) U(6, 4>) = 2 sin2 0 sin2 <j>, 0 < d < x, 0 < <t> < x

13.23 For the following radiation intensities, find the directive gain and directivity:

(a) U(6, 4>) = s in 2 0, 0 < 0 < x, 0 < <j> < 2x

(b) U(6, <t>) = 4 sin2 0 c o s 2 0 , O < 0 < T T , 0 < 0 < TT

(c) Uifi, <t>) = 10 cos2 0 sin2 4>/2, 0 < 0 < x, 0 < <f> < x/2

13.24 In free space, an antenna radiates a field

4TIT

at far field. Determine: (a) the total radiated power, (b) the directive gain at 0 = 60°.

13.25 Derive Es at far field due to the two-element array shown in Figure 13.24. Assume that
the Hertzian dipole elements are fed in phase with uniform current /o cos cot.
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Figure 13.24 Two-element array of Problem
13.25.

-*-y

13.26 An array comprises two dipoles that are separated by one wavelength. If the dipoles are
fed by currents of the same magnitude and phase,

(a) Find the array factor.

(b) Calculate the angles where the nulls of the pattern occur.

(c) Determine the angles where the maxima of the pattern occur.

(d) Sketch the group pattern in the plane containing the elements.

13.27 An array of two elements that are fed by currents that are 180° out of phase with each
other. Plot the group pattern if the elements are separated by: (a) d = A/4, (b) d = X/2

13.28 Sketch the group pattern in the xz-plane of the two-element array of Figure 13.10 with

(a) d = A, a = -all

(b) d = A/4, a = 3TT/4

(c) d = 3A/4, a = 0

13.29 An antenna array consists of N identical Hertzian dipoles uniformly located along the z-
axis and polarized in the ^-direction. If the spacing between the dipole is A/4, sketch the
group pattern when: (a) N = 2, (b) N = 4.

13.30 Sketch the resultant group patterns for the four-element arrays shown in Figure 13.25.

- X / 2 - -X/2-

(a)

'12. l[0_ Figure 13.25 For Problem 13.30.

x/2-

'12.
•X/4-

I jit 12

-X/4-

(b)

//3ir/2

-X/4-
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13.31 For a 10-turn loop antenna of radius 15 cm operating at 100 MHz, calculate the effective
area at $ = 30°, <j> = 90°.

13.32 An antenna receives a power of 2 /xW from a radio station. Calculate its effective area if
the antenna is located in the far zone of the station where E = 50 mV/m.

13.33 (a) Show that the Friis transmission equation can be written as

"r _ AerAet

(b) Two half-wave dipole antennas are operated at 100 MHz and separated by 1 km. If
80 W is transmitted by one, how much power is received by the other?

13.34 The electric field strength impressed on a half-wave dipole is 3 mV/m at 60 MHz. Cal-
culate the maximum power received by the antenna. Take the directivity of the half-wave
dipole as 1.64.

13.35 The power transmitted by a synchronous orbit satellite antenna is 320 W. If the antenna
has a gain of 40 dB at 15 GHz, calculate the power received by another antenna with a
gain of 32 dB at the range of 24,567 km.

13.36 The directive gain of an antenna is 34 dB. If the antenna radiates 7.5 kW at a distance of
40 km, find the time-average power density at that distance.

13.37 Two identical antennas in an anechoic chamber are separated by 12 m and are oriented
for maximum directive gain. At a frequency of 5 GHz, the power received by one is 30
dB down from that transmitted by the other. Calculate the gain of the antennas in dB.

13.38 What is the maximum power that can be received over a distance of 1.5 km in free space
with a 1.5-GHz circuit consisting of a transmitting antenna with a gain of 25 dB and a re-
ceiving antenna with a gain of 30 dB? The transmitted power is 200 W.

13.39 An L-band pulse radar with a common transmitting and receiving antenna having a di-
rective gain of 3500 operates at 1500 MHz and transmits 200 kW. If the object is 120 km
from the radar and its scattering cross section is 8 m2, find

(a) The magnitude of the incident electric field intensity of the object

(b) The magnitude of the scattered electric field intensity at the radar

(c) The amount of power captured by the object

(d) The power absorbed by the antenna from the scattered wave

13.40 A transmitting antenna with a 600 MHz carrier frequency produces 80 W of power. Find
the power received by another antenna at a free space distance of 1 km. Assume both an-
tennas has unity power gain.

13.41 A monostable radar operating at 6 GHz tracks a 0.8 m2 target at a range of 250 m. If the
gain is 40 dB, calculate the minimum transmitted power that will give a return power of
2/tW.
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13.42 In the bistatic radar system of Figure 13.26, the ground-based antennas are separated by
4 km and the 2.4 m2 target is at a height of 3 km. The system operates at 5 GHz. For Gdt

of 36 dB and Gdr of 20 dB, determine the minimum necessary radiated power to obtain a
return power of 8 X 10~12W.

Scattered
wave

Receiving
antenna

Target a Figure 13.26 For Problem 13.42.

3 km

Transmitting
antenna


